0D Variable | Units | Data Type | Brief Description | Full Description |
---|---|---|---|---|

Tokamak: | TOKAMAK | String | tokamak name | tokamak name |

Pulse number: | SHOT | String | shot number | shot number |

Contact person: | CONTACT | String | contact person at the experiment | contact person at the experiment |

Institution: | INSTITUTION | String | institution | institution |

Date of shot: | SHOT_DATE | String | date of shot | date of shot |

Analysis code(s): | ANAL_CODES | String | codes used for data analysis | codes used for data analysis |

Run number: | RUN_NUMBER | String | run number | run number |

Date of analysis: | ANAL_DATES | String | date of analysis | date of analysis |

Assumptions: | ASSUMPTION | String | main assumptions made in the analysis | main assumptions made in the analysis |

Shot description: | DESCRIPTION | String | summary of useful information describing the shot and giving the purpose of the experiment | summary of useful information describing the shot and giving the purpose of the experiment |

Publication: | PUBLICATION | String | publication | publication |

Additional: | ADDITIONAL | String | any additional information | any additional information |

0D Variable | Units | Data Type | Brief Description | Full Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

TOK | - | String | tokamak | This variable designates which tokamak has supplied the data. For example: ASDEX, D3D, JET, JFT2M, PBXM... (10 ASCII characters). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

UPDATE | - | Integer | last update YYYYMMDD | The date of the most recent update for any variable listed in the database. The format is YYYYMMDD (Year-Month-Day). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

DATE | - | Integer | shot date YYYYMMDD | The date the shot was taken. The format is YYYYMMDD. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

SHOT | - | String | shot # | The shot from which the data are taken. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

TIME | s | Real | time | Time during the shot at which the data are taken in seconds. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

AUXHEAT | - | String | auxiliary heating type | Type of auxiliary heating. Possible values are:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PHASE | - | String | plasma phase | The phase of the discharge at TIME. Possible values are:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

STATE | - | String | plasma state ('STEADY' or 'TRANS') | Description of the plasma state for the present time slice:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PGASA | amu | Integer | mass number of main gas | Mass number of the plasma working gas. Possible values are: 1 (Hydrogen), 2 (Deuterium), 3 (^{3}H_{e}) or 4 (^{4}H_{e}). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PGASZ | - | Integer | charge number of main gas | Charge number of the plasma working gas. Possible values are: 1 (Hydrogen or Deuterium) or 2 (Helium). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BGASA | amu | Integer | mass number of beam gas | Mass number of the neutral beam gas. Possible values are: 1 (Hydrogen), 2 (Deuterium), 3 (^{3}H_{e}) or 4 (^{4}H_{e}). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BGASZ | - | Integer | charge number of beam gas | Charge number of the neutral beam gas. Possible values are: 1 (Hydrogen or Deuterium) or 2 (Helium). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BGASA2 | amu | Integer | mass number of 2nd beam gas (JET) | Mass number of the second neutral beam gas (JET only). Possible values are: 1 (Hydrogen), 2 (Deuterium), 3(^{3}H_{e}) or 4 (^{4}H_{e}). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BGASZ2 | - | Integer | charge number of 2nd beam gas (JET) | Charge number of the second neutral beam gas (JET only). Possible values are: 1 (Hydrogen or Deuterium) or 2 (Helium). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PIMPA | amu | Integer | mass number of main impurity | Mass number of the plasma main impurity. Possible values are: 8 (Beryllium), 10 (Boron), 12 (C), etc ... | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PIMPZ | - | Integer | charge number of main impurity | Charge number of the plasma main impurity. Possible values are: 4 (Beryllium), 5 (Boron), 6(C), etc ... | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PELLET | - | String | pellet material | Pellet material if a pellet(s) has been injected. Possible values are:
A pellet table format is as follows:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

RGEO | m | Real | geometric axis | The plasma geometrical major radius in meters, from an MHD equilibrium fit, defined as the average of the minimum and the maximum radial extent of the plasma at the elevation of the magnetic axis. Normal level of accuracy is ASDEX (± 0.5%), D3D (± 0.6%) JET (± 1%), JFT2M (± 0.75%), PBXM (± 0.65%), PDX (± 0.75%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

RMAG | m | Real | magnetic axis | The major radius of the magnetic axis in meters from an MHD equilibrium fit or a formula based on a number of equilibria (ASDEX). Normal level of accuracy is ASDEX (± 0.5%), D3D (± 1%), JET (± 2%), JFT2M (±2%), PBXM (± 1%), PDX (± 4%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

AMIN | m | Real | minor radius | The horizontal plasma minor radius in meters from an MHD equilibrium fit or a formula based on a number of equilibria (ASDEX). Normal level of accuracy is ASDEX (± 1%), D3D (± 0.5%), JET (± 3%), JFT2M (± 3%), PBXM (± 3%), PDX (± 3%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

SEPLIM | m | Real | minimum separation between separatrix and limiter/wall | The minimum distance between the separatrix flux surface and either the vessel wall or limiters in meters from an MHD equilibrium fit or a formula based on a number of equilibria (ASDEX). Normal level of accuracy is ASDEX (± 1 cm), D3D (± 0.5 cm), JET (± 1 cm), JFT2M (± 1 cm), PBXM (± 0.5 cm), PDX (± 1 cm). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

XPLIM | m | Real | minimum separation between Xpoint and limiter/wall | The minimum distance between the X-point and either the vessel walls or limiters in meters from an MHD equilibrium fit. The value is positive if X-point is inside either the vessel wall or limiters. Normal level of accuracy is ASDEX (Na), D3D (± 3 cm), JET (± 5 cm), JFT2M (± 3 cm), PBXM (± 5 cm), PDX (± 5 cm). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

KAPPA | - | Real | plasma elongation | The plasma elongation determined from an MHD equilibrium fit or a formula based on a number of equilibria (ASDEX). Normal level of accuracy is ASDEX (± 1%), D3D (± 1%), JET (± 5%), JFT2M (± 10%), PBXM (± 10%), PDX (k = 1 for all records, ± 10%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

DELTA | - | Real | triangularity | The triangularity of the plasma boundary from an MHD equilibrium fit. Normal level of accuracy is ASDEX (Na), D3D (± 10%), JET (±10%), JFT2M (± 10%), PBXM (± 25%), PDX (Na). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

INDENT | m | Real | indentation | Indentation of the plasma determined from an MHD equilibrium fit. Normal level of accuracy is ASDEX (Na), D3D (Na), JET (Na), JFT2M (Na), PBXM (± 15%), PDX (Na). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

AREA | m^2 | Real | poloidal cross sectional area | Area of plasma cross section in m^{2 }determined from an MHD equilibrium fit or a formula based on a number of equilibria (ASDEX). Normal level of accuracy is ASDEX (± 3%), D3D (± 3%),JET (± 6%), JFT2M (± 5%), PBXM (± 10%), PDX (±5%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

VOL | m^3 | Real | plasma volume | The plasmas volume in m^{3} determined from an MHD equilibrium fit or a formula based on a number of equilibria (ASDEX). Normal level of accuracy is ASDEX (± 3%), D3D (± 3%),JET (± 6%), JFT2M (± 5%), PBXM (± 10%), PDX (±5%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

CONFIG | - | String | limiter/divertor configuration | The plasma configuration. Possible values are: SN for single null, DN for double null, IW for inner wall or TOP,BOT, OUT, IN for a limiter.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

IGRADB | - | Integer | ion gradB drift towards/away (1/-1) from Xpoint | Indicates when CONFIG = SN whether the ion gradB-drift is towards (1) or pointing away from (-1) the X-point. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

WALMAT | - | String | wall material | The material of the vessel wall. Possible values are: SS for stainless steel, IN for inconel, IN/C for Inconel with carbon, or CSS for (partly) Carbon on stainless steel. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

DIVMAT | - | String | divertor material | The material of the divertor tiles. Possible values are: SS for stainless steel, C or CC for carbon, TI1 or TI2 for titanium, BE for beryllium or C/BE for carbon at the top and beryllium at the bottom. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

LIMMAT | - | String | limiter material | The material of the limiters. Possible valuesare: BE for beryllium or C for carbon. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

EVAP | - | String | evaporated wall conditioning material | The evaporated material used to cover the inside of the vessel. Possible values are: BOROA (B_{2}H_{6} + CH_{4} + H_{2}) or BOROB (B_{2}H_{6} + H_{2}) BOROC (B_{2}D_{6} + He) for boron, CARB or CARBH (CH_{4} + D_{2}) for carbon, TI for titanium, BE for beryllium or NONE for no evaporation. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BT | T | Real | vacuum toroidal magnetic field at geometric axis | The vacuum toroidal magnetic field in Tesla at RGEO determined from the TF coil current. Negative values for JET indicate operation with reversed toroidal field. Normal level of accuracy is ± 1% for all machines. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

IP | A | Real | plasma current | The plasma current in amperes determined from an external Rogowski loop with vessel current subtraction. Normally negative values for JET. Positive values for JET indicate operation with reversed current. Normal level of accuracy is ASDEX (± 2%), D3D (± 1%),JET (± 1%), JFT2M (± 1%), PBXM (±1%), PDX (± 1%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

VSURF | V | Real | loop voltage | The loop voltage at the plasma boundary in volts. Normal level of accuracy is ASDEX (± 5%), D3D (Na),JET (± 5%), JFT2M (± 5%), PBXM (±50%), PDX (± 10%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Q95 | - | Real | safety factor at 95% poloidal flux | The plasma safety factor from an MHD equilibrium fit evaluated at the flux surface that encloses 95% of the total poloidal flux. For ASDEX Q95 = q_{cyl}(1 + (AMIN/RGEO)^{2} (1 + 0.5 BEILI2^{2})) with q_{cyl} = 10^{7} (BT/IP) (AMIN^{2}/RGEO) (1 + KAPPA^{2})/2. Normal level of accuracy is ASDEX (± 15%), D3D (± 3%),JET (± 10%), JFT2M (± 10%) PBXM(±10%), PDX (± 10%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BEPMHD | - | Real | poloidal beta | Poloidal beta computed from the MHD equilibrium fit. For ASDEX BEPMHD equals BEIMHD. Normal level of accuracy is ASDEX (± 15%), D3D (± .05), JET (Na), JFT2M (± 15%), PBXM (± 20%),PDX (± 20%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BETMHD | - | Real | toroidal beta | Toroidal beta computed from the MHD equilibrium fit. Normal level of accuracy is ASDEX (± 18%), D3D (±0.05/b _{?}),JET (± 12%), JFT2M (± 15%), PBXM (±20%), PDX (± 20%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BEPDIA | - | Real | poloidal beta from diamagnetic loop | Corrected poloidal diamagnetic beta for ASDEX from diamagnetic coils averaged over the 3 ohmic points in the database, (± 15%). D3D, JET, JFT2M, PBXM, PDX: Na. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

NEL | m^-3 | Real | central line averaged electron density | Central line average electron density in m^{-3} from interferometer. For JET NEL has been approximated by: ohmic: NEL ~ exp {2.931 +0.873 log (NEV) + 0.064 log (NEØ)} H-mode: NEL ~ exp {3.745 +0.825 log (NEV) + 0.092 log (NEØ)} If no measurement is available, the variable NELFORM indicates if NEL is measured or approximated. Normal level of accuracy is ASDEX (± 2%), D3D (± 2 x 10 ^{18} m^{-3}), JET (± 8%), JFT2M (± 2%), PBXM (± 5%), PDX (± 5%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

DNELDT | m^-3/s | Real | time derivative of central line averaged electron density | The time rate of change of NEL in m^{-3}/s. Normal level of accuracy is similar to NEL. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ZEFF | - | Real | line averaged effective charge | Line average plasma effective charge determined from visible bremsstrahlung. Normal level of accuracy is ASDEX (± 10%), D3D (± 20%), JET (± 30%). JFT2M, PBXM, PDX: Na. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PRAD | W | Real | radiated power | Total radiated power in watts as measured by Bolometer. Normal level of accuracy is ASDEX (± 20%), D3D (± 15%), JET (± 10 15%), JFT2M (± 10 - 20%), PBXM (± < 25%), PDX (Na). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

POHM | W | Real | Ohmic power | Total ohmic power in watts.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ENBI | V | Real | neutral beam energy | Neutral beam energy weighted by power in volts. This quantity is calculated from &sum E_{i}P_{i}/&sum P_{i} where E_{i} is the beam energy for source i and P_{i} is the beam power for source i. For ASDEX the primary energy component is given.Normal level of accuracy is ASDEX (± 0.2 KV),D3D (± 10%), JET (± 12%), JFT2M (±5%), PBXM (± 15%), PDX (± 15%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PINJ | W | Real | power injected by main neutral beam | The injected neutral beam power with beam of (BGASA, BGASZ) that passes into the torus in watts. Zero if no beams are on. Notice total injected neutral beam power is PINJ + PINJ2. Normal level of accuracy is ASDEX (± 10%), D3D (± 10%), JET (± 6%), JFT2M (± 5%), PBXM (±5%), PDX (± 10%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BSOURCE | - | Integer | main beam power fractions F1*10000+F2*100+F3 (F1 F2 F3 all to nearest %) | The power fractions injected by neutral beam eg P_{1} = 80%, P_{2}= 10% and P_{3 }= 10% then BSOURCE = 801010. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PINJ2 | W | Real | power injected by auxiliary neutral beam | The injected neutral beam power from a second source with beam of (BGASA2, BGASZ2) in watts (JET only). Zero if no beams of second source are on. Normal level of accuracy is JET (± 6%). ASDEX, D3D, JFT2M, PBXM, PDX: Na. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BSOURCE2 | - | Integer | auxiliary beam power fractions F1*10000+F2*100+F3 (F1 F2 F3 all to nearest %) | The power fractions injected by neutral beam with the second source (JET only). For 89-90 data the possibilities for BSOURCE and BSOURCE2 are 781606 for 80kV D, 652114 for 140kV D, 990000 for ^{3}H_{e} or ^{4}H_{e} beams. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

COCTR | - | Real | fraction of beam power co-injected | Fraction of beam power co-injected as compared to the total beam power injected. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PNBI | W | Real | total injected beam power minus shine through | Total injected neutral beam power minus shine through in watts. Zero if no beams are on. Normal level of accuracy is ASDEX (± 10%),D3D (± 10%), JET (± 10%), JFT2M (<± 10%), PBXM (± 10%), PDX (± 10%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ECHFREQ | Hz | Real | ECH frequency | ECH frequency in Hz | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ECHMODE | - | String | mode of ECH waves | Mode of ECH waves, O is ordinary and X is extraordinary. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ECHLOC | - | String | ECH launch location | Location of ECH launch, IN identifies waves launched from the high field side or inside of the vessel and OUT is from the low field side. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PECH | W | Real | ECH power coupling to plasma | ECH power in watts coupled to the plasma. Zero if no ECH is applied. Normal level of accuracy is D3D (± 10%). ASDEX, JET, JFT2M,PBXM, PDX: Na. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ICFREQ | Hz | Real | ICRH frequency | Frequency of ICRH waves in Hz. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ICSCHEME | - | String | ICRH heating scheme | ICRH heating scheme. Possible Values: HMIN for H minority, HE3MIN for ^{3}He minority or H2NDHARM for 2nd harmonic H heating respectively. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ICANTEN | - | String | ICRH antenna phasing | Antenna phasing. Possible Values are DIPOLE or MONOPOLE. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PICRH | W | Real | ICRH power coupling to plasma | ICRH power in watts coupled to the plasma. Zero if no ICRH is applied. Normal level of accuracy is JET (± 10%). ASDEX, D3D, JFT2M, PBXM, PDX: Na. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

LHFREQ | Hz | Real | LH frequency | Frequency of LH waves in Hz. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

LHNPAR | - | Real | LH parallel mode number | LH parallel mode number. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PLH | W | Real | LH power coupling to plasma | LH power in watts coupled to the plasma. Zero if no LH is applied. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

IBWFREQ | Hz | Real | IBW frequency | Frequency of IBW in Hz. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PIBW | W | Real | IBW power coupling to plasma | IBW power in watts coupled to the plasma. Zero if no IBW is applied. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

TE0 | eV | Real | central Te | The electron temperature at the magnetic axis in eV.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

TI0 | eV | Real | central Ti | The ion temperature at the magnetic axis in eV.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

WFANI | - | Real | fraction of fast ion energy in perpendicular direction | Estimate of fraction of perpendicular fast ion energy as compared to the totalfast ion energy due to NBI. If WFPER and WFPAR are available WFANI = WFPER/(WFPER + WFPAR), otherwise:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

WFICRH | J | Real | perpendicular fast ion energy content during ICRH | Estimate of the perpendicular fast ion energy content during ICRH heating in Joules. It is given by 4/3 (DWDIA - DWMHD), where DWDIA and DWMHD is the increase in energy due to ICRH. Zero if no ICRH. Normal level of accuracy is JET (± 50%). ASDEX, D3D, JFT2M, PBXM, PDX: Na | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

MEFF | amu | Real | effective atomic mass number | Effective atomic mass in AMU. = 0.5 (PGASA + 0.5 (BGASA + BGASA2)) if PINJ > 0 and PINJ2 > 0. = 0.5 (PGASA + BGASA) if only PINJ > 0. = PGASA otherwise (A few ohmic observations from JET have PABS<3 kW. For these observations MEFF = PGASA). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

ISEQ | - | String | parameter scan identifier | Parameter scan identifier Possible options for ASDEX are:
Possible options for JFT2M are:
No options available for D3D, JET, PBXM and PDX. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

WTH | J | Real | thermal plasma energy content | Estimated thermal plasma energy content in Joules. ASDEX: WTH = WDIA - 1.5*WFANI*WFFORM. D3D: WTH = WMHD - WFFORM. JET: WTH = WDIA - 1.5 (WFPER + WFICRH). If WFPER is missing WFPER is replaced by WFANI* WFFORM. JFT2M: WTH = WDIA/3 + 2*WMHD/3 - WFFORM. PBXM: WTH = WMHD - 0.75*WFPER - 1.5*WFPAR. PDX: WTH = WMHD - 0.75*WFPER - 1.5*WFPAR. ASDEX, D3D, JET, JFT2M, PBXM, PDX: Co. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

WTOT | J | Real | total plasma energy content | Estimated total plasma energy content in Joules. ASDEX: WTOT = WTH + WFFORM. D3D: WTOT = WMHD JET: WTOT = WTH + WFPER + WFPAR + WFICRH. If WFPER and WFPAR are missing they are replaced by WFFORM. JFT2M: WTOT = WTH + WFFORM PBXM: WTOT = WTH + WFPER + WFPAR PDX: WTOT = WTH + WFPER + WFPAR ASDEX, D3D, JET, JFT2M, PBXM, PDX: Co. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

DWTOT | Js^-1 | Real | time derivative of total plasma energy content | Time rate of change of WTOT in Joules / s . | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PL | W | Real | uncorrected loss power | Estimated Loss Power not corrected for charge exchange and unconfined orbit losses in watts. ASDEX: PL = POHM + PNBI - DWDIA/3 - 2*DWMHD/3 D3D: PL = POHM + PNBI + PECH - DWMHD JET: PL = POHM + PNBI + PICRH - DWDIA JFT2M: PL = POHM + PNBI - DWDIA PBXM: PL = POHM + PNBI - DWMHD PDX: PL = POHM + PNBI - DWMHD ASDEX, D3D, JET, JFT2M, PBXM, PDX: Co. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

PLTH | W | Real | loss power with correction for cx and orbit losses | Estimated Loss Power corrected for charge exchange and unconfined orbit losses in Watts, i.e. PLTH = PL - PFLOSS. ASDEX, D3D, JET, JFT2M, PBXM, PDX: Co. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

TAUTOT | s | Real | total energy confinement time | Estimated total energy confinement time (WTOT/PLTH) in seconds. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

TAUTH | s | Real | thermal energy confinement time | Estimated thermal energy confinement time (WTH/PLTH) in seconds. |

1D Variable | Units | Data Type | Brief Description | Full Description |
---|---|---|---|---|

IP | A | Real | plasma current | The plasma current in amperes determined from an external Rogowski loop with vessel current subtraction. Normally negative values for JET. Positive values for JET indicate operation with reversed current. Normal level of accuracy is ASDEX (± 2%), D3D (± 1%), JET (± 1%), JFT2M (± 1%), PBXM (± 1%), PDX (± 1%). |

BT | T | Real | vacuum toroidal field at geometric axis | The vacuum toroidal magnetic field in Tesla at RGEO determined from the TF coil current. Negative values for JET indicate operation with reversed toroidal field. Normal level of accuracy is ± 1% for all machines. |

AMIN | m | Real | minor radius | The horizontal plasma minor radius in meters from an MHD equilibrium fit or a formula based on a number of equilibria (ASDEX). Normal level of accuracy is ASDEX (± 1%), D3D (± 0.5%),JET (± 3%), JFT2M (± 3%), PBXM (± 3%), PDX (± 3%). |

RGEO | m | Real | geometric axis | The plasma geometrical major radius in meters, from an MHD equilibrium fit, defined as the average of the minimum and the maximum radial extent of the plasma. Normal level of accuracy is ASDEX (± 0.5%), D3D (±0.6%) JET (± 1%), JFT2M (± 0.75%),PBXM (± 0.65%), PDX (± 0.75%). |

KAPPA | - | Real | elongation | The plasma elongation determined from an MHD equilibrium fit or a formula based on a number of equilibria (ASDEX). Normal level of accuracy is ASDEX (± 1%), D3D (± 1%),JET (± 5%), JFT2M (± 10%), PBXM (± 10%),PDX (k = 1 for all records, ±10%). |

DELTA | - | Real | triangularity | The triangularity of the plasma boundary from an MHD equilibrium fit. Normal level of accuracy is ASDEX (Na), D3D (± 10%), JET (±10%), JFT2M (± 10%), PBXM (± 25%), PDX (Na). |

INDENT | m | Real | indentation | Indentation of the plasma determined from an MHD equilibrium fit. Normal level of accuracy is ASDEX (Na), D3D (Na), JET (Na),JFT2M (Na), PBXM (± 15%), PDX (Na). |

PNBI | W | Real | total injected NBI power | Total injected neutral beam power minus shine through in watts. Zero if no beams are on. Normal level of accuracy is ASDEX (± 10%),D3D (± 10%), JET (± 10%), JFT2M (<± 10%), PBXM (± 10%), PDX (± 10%). |

PECH | W | Real | coupled ECH power | ECH power in watts coupled to the plasma. Zero if no ECH is applied. Normal level of accuracy is D3D (± 10%). ASDEX, JET, JFT2M,PBXM, PDX: Na. |

PICRH | W | Real | coupled ICRH power | ICRH power in watts coupled to the plasma. Zero if no ICRH is applied. Normal level of accuracy is JET (± 10%). ASDEX, D3D, JFT2M, PBXM, PDX: Na. |

PLH | W | Real | coupled LH power | LH power in watts coupled to the plasma. Zero if no LH is applied. |

PIBW | W | Real | coupled IBW power | IBW power in watts coupled to the plasma. Zero if no IBW is applied. |

PFLOSS | W | Real | lost NBI power | Neutral beam power in watts that is lost from the plasma through charge exchange and unconfined orbits. ASDEX: From fits to FREYA code results, (± 30%) D3D: PABS exp (3.3 - IP/10 ^{6})/100 (± 30%).JET: PINJ exp (3.35 - 0.667 | IP |/10 ^{6 }-0.2 NEL/10^{19})/100 (± 50%).JFT2M: From fits to Monte Carlo code results (± 20%). PBXM: From a fits to the TRANSP code results (± 20%). PDX: From a fits to the TRANSP code results (± 30%). |

PRAD | W | Real | total radiated power | Total radiated power in watts as measured by Bolometer. Normal level of accuracy is ASDEX (± 20%), D3D (±15%), JET (± 10 15%), JFT2M (± 10 - 20%),PBXM (± < 25%), PDX (Na). |

ZEFF | - | Real | line averaged effective charge | Line average plasma effective charge determined from visible bremsstrahlung. Normal level of accuracy is ASDEX (± 10%),D3D (± 20%). JET (± 30%). JFT2M, PBXM, PDX: Na. |

NEL | m^-3 | Real | line averaged electron density | Central line average electron density in m^{-3} from interferometer. For JET NEL has been approximated by ohmic: NEL ∝ exp {2.931 +0.873 log (NEV) + 0.064 log (NE0)} H-mode: NEL ∝ exp {3.745 + 0.825 log (NEV) + 0.092 log (NE0)} if no measurement is available. The variable NELFORM indicates if NEL is measured or approximated. Normal level of accuracy is ASDEX (± 2%),D3D (± 2 x 10 ^{18} m^{-3}),JET (± 8%), JFT2M (± 2%), PBXM (± 5%), PDX(± 5%). |

VSURF | V | Real | plasma surface loop voltage | The loop voltage at the plasma boundary in volts. Normal level of accuracy is ASDEX (± 5%), D3D (Na), JET (± 5%), JFT2M (± 5%), PBXM (±50%), PDX (± 10%). |

VLOOP | V | Real | measured loop voltage | Measured loop voltage at the coil location in |

LI | - | Real | internal inductance | Internal plasma inductance: l _{i}=2 ∫ B_{p}^{2}dV / ( μ_{0}^{2} I_{p}^{2} R_{geo} ) |

NMAIN0 | m^-3 | Real | central main ion density | Central main ion density in m-3. |

THNT | s^-1 | Real | thermal neutron yield | Total thermal neutron yield in s-1. |

WTH | J | Real | thermal plasma energy content | Estimated thermal plasma energy content in Joules. ASDEX: WTH = WDIA - 1.5*WFANI*WFFORM. D3D: WTH = WMHD - WFFORM. JET: WTH = WDIA - 1.5 (WFPER + WFICRH). If WFPER is missing WFPER is replaced by WFANI* WFFORM. JFT2M: WTH = WDIA/3 + 2*WMHD/3 - WFFORM. PBXM: WTH = WMHD - 0.75*WFPER - 1.5*WFPAR. PDX: WTH = WMHD - 0.75*WFPER - 1.5*WFPAR. ASDEX, D3D, JET, JFT2M, PBXM, PDX: Co. |

WTOT | J | Real | total plasma energy content | Estimated total plasma energy content in Joules. ASDEX: WTOT = WTH + WFFORM. D3D: WTOT = WMHD JET: WTOT = WTH + WFPER + WFPAR + WFICRH. If WFPER and WFPAR are missing they are replaced by WFFORM. JFT2M: WTOT = WTH + WFFORM PBXM: WTOT = WTH + WFPER + WFPAR PDX: WTOT = WTH + WFPER + WFPAR ASDEX, D3D, JET, JFT2M, PBXM, PDX: Co. |

TE0 | eV | Real | core electron temperature | The electron temperature at the magnetic axis in eV. ASDEX: From 16 radial YAG measurements under the same profile assumptions as for TEV (± 10%). D3D: Determined by a spline temperature profile fit to the Thomson scattering data (± 10%). JET: From ECE temperature profile (± 10%). JFT2M, PBXM, PDX: Na. |

TI0 | eV | Real | core ion temperature | The ion temperature at the magnetic axis in eV. D3D: Determined by a spline temperature profile fit to the charge exchange recombination data (± 10%). JET: From Crystal X-ray diagnostic (±10%) or from charge exchange recombination spectroscopy (± 10%). ASDEX, JFT2M, PBXM, PDX: Na. |

Q95 | - | Real | safety factor at 95% poloidal flux | The plasma safety factor from an MHD equilibrium fit evaluated at the flux surface that encloses 95% of the total poloidal flux. For ASDEX Q95 = q_{cyl}(1 + (AMIN/RGEO)^{2}(1 + 0.5 BEILI2^{2})) with q_{cyl} = 10^{7} (BT/IP)(AMIN^{2}/RGEO) (1 + KAPPA^{2})/2. Normal level of accuracy is ASDEX (± 15%), D3D (± 3%), JET (± 10%), JFT2M (± 10%) PBXM (± 10%), PDX (± 10%). |

POHM | W | Real | Ohmic power | Total ohmic power in watts. ASDEX: Determined from max {0, VSURF*IP}, (Ohmic: ± 5% H: ± 50%). D3D: Calculated using CB _{10}I_{p}^{2}RGEO^{2}/(W_{T}n_{e}). B_{10} is the central visible bremsstrahlung signal. When n_{e }is determined from the radial (vertical) CO_{2} chord, C is equal to 1.03*10^{-19} (9.92*10^{-20}) (± 15%). JET: Corrected for inductance effects (± 20%). JFT2M: Calculated as VSURF*IP (± 10%). PBXM: Calculated as VSURF*IP (± 50%). PDX: Calculated using VSURF and IP corrected for inductance effects (± 20%). |

IBOOT | A | Real | bootstrap current | Estimated total bootstrap current (in A). |

PHIA | Wb | Real | toroidal flux | Total toroidal flux in Weber enclosed by the plasma |

PFUSION | W | Real | DT fusion power | Total fusion power due to DT reactions in W. |

2D Variable | Units | Data Type | Brief Description | Full Description |
---|---|---|---|---|

RHOxxxx | - | Real | evolving rho grid for experimental data | evolving rho grid for experimental data, where xxxx = TEXP, TEXPEB, TIXP, TIXPEB, NEXP, NEXPEB, NMnXP, NMnXPEB, NIMPXP, NIMPXPEB, VROTXP, VROTXPEB (where n labels thermal ion species 1&le n&le 4). |

TE | eV | Real | interpolated electron temperature | Fitted electron temperature profile in eV. |

TEEB | eV | Real | error in interpolated electron temperature | Error bars on the fitted electron temperature profile in eV. Provided on the same radial positions as TE. |

TEXP | eV | Real | experimental electron temperature | Measured electron temperature profile in eV. |

TEXPEB | eV | Real | error in experimental electron temperature | Error bars on the measured electron temperature profile in eV. |

TI | eV | Real | interpolated ion temperature | Fitted ion temperature profile in eV. |

TIEB | eV | Real | error in interpolated ion temperature | Error bars on the fitted ion temperature profile in eV. Provided on the same radial positions as TI. |

TIXP | eV | Real | experimental ion temperature | Measured ion temperature profile in eV. |

TIXPEB | eV | Real | error in experimental ion temperature | Error bars on the measured ion temperature profile in eV. TIXPEB is added to TIXP for the upper limit. TIXPEB is subtracted from TIXP for the lower limit. Provided on the same radial positions as TIXP. |

NE | m^-3 | Real | interpolated electron density | Fitted electron density profile in m-3. |

NEEB | m^-3 | Real | error in interpolated electron density | Error bars on the fitted electron density profile in m-3. Provided on the same radial positions as NE. |

NEXP | m^-3 | Real | experimental electron density | Measured electron density profile in m-3. |

NEXPEB | m^-3 | Real | error in experimental electron density | Error bars on the measured electron density profile in m-3. NEXPEB is added to NEXP for the upper limit. NEXPEB is subtracted from NEXP for the lower limit. Provided on the same radial positions as NEXP. |

QNBIE | W/m^3 | Real | NBI electron power deposition | Power deposition profile on thermal electrons by beams in W/m-3. |

QICRHE | W/m^3 | Real | ICRH electron power deposition | Power deposition profile on thermal electrons by icrh in W/m-3. |

QECHE | W/m^3 | Real | ECH electron power deposition | Power deposition profile |

QLHE | W/m^3 | Real | LH electron power deposition | Power deposition profile on thermal electrons by LH in W/m-3. |

QIBWE | W/m^3 | Real | IBW electron power deposition | Power deposition profile on thermal electrons by IBW in W/m-3. |

QNBII | W/m^3 | Real | NBI ion power deposition | Power deposition profile on thermal ions by beams in W/m-3. (includes the thermalization power of fast ions |

QICRHI | W/m^3 | Real | ICRH ion power deposition | Power deposition profile on thermal ions by icrh in W/m-3. |

QECHI | W/m^3 | Real | ECH ion power deposition | Power deposition profile on thermal ions by ECH in W/m-3. |

QLHI | W/m^3 | Real | LH ion power deposition | Power deposition profile on thermal ions by LH in W/m-3. |

QIBWI | W/m^3 | Real | IBW ion power deposition | Power deposition profile on thermal ions by IBW in W/m-3. |

SNBIE | m^-3/s | Real | NBI electron source | Source of thermal electrons from beams in s-1 m-3. |

SNBII | m^-3/s | Real | NBI ion source | Source of thermal ions from beams due to thermalization of beams particle and include charge exchange processes, in s-1 m-3. |

CURNBI | A/m^2 | Real | NBI driven current profile | Current drive profile by beams in A m-2. |

CURICRH | A/m^2 | Real | ICRH driven current profile | Current drive profile by ICRH in A m-2. |

CURECH | A/m^2 | Real | ECH driven current profile | Current drive profile by ECH in A m-2. |

CURLH | A/m^2 | Real | LH driven current profile | Current drive profile by LH in A m-2. |

NFAST | m^-3 | Real | fast ion density profile | Non thermal ion density profile in m-3. |

QRAD | W/m^3 | Real | radiated power density | Total radiated power density in W m-3. |

IOTAVAC | - | Real | stellarator (not tokamaks) vacuum rotational transform | Stellarator vacuum rotational transform. Omitted for Tokamaks. |

ZEFFR | - | Real | effective charge profile | Plasma effective charge radial profile. |

ZEFFREB | - | Real | error in effective charge profile | Error bars on plasma effective charge radial profile. Provided on the same radial positions as ZEFFR. |

Q | - | Real | safety factor profile | Safety factor profile. |

QEB | - | Real | error in safety factor profile | Error bars on safety factor profile. Provided on the same radial positions as Q. |

CHIE | m^2/s | Real | estimated electron thermal diffusivity | Estimated thermal electrons heat diffusivity in m2 s-1. |

CHII | m^2/s | Real | estimated ion thermal diffusivity | Estimated thermal ions heat diffusivity in m2 s-1. |

NM1 | m^-3 | Real | interpolated main ion density | Main ion density profile in m-3. |

NM1EB | m^-3 | Real | error in interpolated main ion density | Error bars on main ion density profile in m-3. |

NM1XP | m^-3 | Real | experimental main ion density | Measured main ion density profile in m-3. |

NM1XPEB | m^-3 | Real | error in experimental main ion density | Error bars on measured main ion density profile in m-3. |

NM2 | m^-3 | Real | interpolated 2nd main ion density | Secondary main ion density profile in m-3. For instance helium injection into deuterium plasma. |

NM2EB | m^-3 | Real | error in interpolated 2nd main ion density | Error bars on secondary main ion density profile in m-3. |

NM2XP | m^-3 | Real | experimental 2nd main ion density | Measured secondary main ion density profile in m-3. |

NM2XPEB | m^-3 | Real | error in experimental 2nd main ion density | Error bars on measured secondary main ion density profile in m-3. |

NM3 | m^-3 | Real | interpolated 3rd main ion density | Third main ion density profile in m-3. For instance helium injection into deuterium plasma. |

NM3EB | m^-3 | Real | error in interpolated 3rd main ion density | Error bars on third main ion density profile in m-3. |

NM3XP | m^-3 | Real | experimental 3rd main ion density | Measured third main ion density profile in m-3. |

NM3XPEB | m^-3 | Real | error in experimental 3rd main ion density | Error bars on measured third main ion density profile in m-3. |

NIMP | m^-3 | Real | interpolated impurity ion density | Main impurity density profile in m-3. |

NIMPEB | m^-3 | Real | error in interpolated impurity ion density | Error bars on main impurity density profile in m-3. |

NIMPXP | m^-3 | Real | experimental impurity ion density | Measured main impurity density profile in m-3. |

NIMPXPEB | m^-3 | Real | error in experimental impurity ion density | Error bars on measured main impurity density profile in m-3. |

QOHM | W/m^3 | Real | Ohmic power density | Ohmic power density in W m-3. |

QEI | W/m^3 | Real | equipartition power density | Equipartition power density from electrons to ions in W m-3. |

CURTOT | A/m^2 | Real | total current density | Total current density in A m-2. |

CURTOTEB | A/m^2 | Real | error in total current density | Error bars on total current density in A m-2. Provided on same radial positions as CURTOT. |

VROT | rad/s | Real | fitted toroidal angular speed | Fitted toroidal angular speed in rad. s-1. |

VROTEB | rad/s | Real | error in fitted toroidal angular speed | Error bars on fitted toroidal angular speed in rad. s-1. Provided on same radial positions as VROT. |

VROTXP | rad/s | Real | experimental toroidal angular speed | Measured toroidal angular speed in rad. s-1. |

VROTXPEB | rad/s | Real | error in experimental toroidal angular speed | Error bars on measured toroidal angular speed in rad. s-1. VROTXPEB is added to VROTXP for upper limit. VROTXPEB is subtracted from VROTXP for lower limit. Provided on same radial positions as VROTXP. |

DWER | W/m^3 | Real | time derivative of electron thermal energy density | Term ∂ W_{e}(ρ,t) / ∂ t of the energy conservation equation in W/m^{3}. |

DWIR | W/m^3 | Real | time derivative of ion thermal energy density | Term ∂ W_{i}(ρ,t) / ∂ t of the energy conservation equation in W/m^{3}, where i is the main thermal ion. |

DNER | m^-3/s | Real | time derivative of electron density | Term ∂ n_{e}(ρ,t) / ∂ t of the electron particles conservation equation in m^{-3}s^{-1}. |

SWALL | m^-3/s | Real | ion particle source from ionisation of recycled wall neutrals | Main thermal ion particle source term due to ionisation of recycling wall neutrals in m^{-3 }s^{-1}. |

QWALLE | W/m^3 | Real | electron heat loss from ionisation of wall neutrals | Thermal electrons heat loss due to the ionisation of wall neutrals in W m^{-3}. |

QWALLI | W/m^3 | Real | ion heat loss from ionisation/CX of wall neutrals | Main thermal ion heat loss due to ionisation and charge exchange with wall neutrals in Wm^{-3.}= ⟨ σ v ⟩ _{cx} n_{0} n_{i} (1.5 T_{i} - E_{0} ) +⟨ σ v ⟩ _{ionisation} n_{0} n_{e} E_{0} |

QFUSE | W/m^3 | Real | fusion power deposition to electrons | Electron heating density due to fusion DT reaction in Wm^{-3}. |

QFUSI | W/m^3 | Real | fusion power deposition to ions | Main thermal ion heating density due to DT fusion reaction in Wm^{-3}. Includes the thermalization power (1.5 S_{thermal α} T_{i}) when Helium^{4} is the main thermal ion. |

BPOL | T | Real | flux surface averaged poloidal magnetic field | Surface averaged poloidal magnetic field in Tesla. |

RMAJOR | m | Real | major radius | The geometrical major radius in meters, from an MHD equilibrium fit, defined as the average of the minimum and the maximum radial extent of the magnetic surface at the elevation of the magnetic axis. Normal level of accuracy is ASDEX (± 0.5%), D3D (± 0.6%) JET (± 1%), JFT2M (± 0.75%), PBXM (± 0.65%), PDX (± 0.75%). |

RMINOR | m | Real | minor radius | Geometric minor radius of the magnetic surface at the elevation of the magnetic axis in m . |

VOLUME | m^3 | Real | volume | Volume enclosed by the magnetic surface in m3. |

KAPPAR | - | Real | elongation | Average elongation of the magnetic surface. |

DELTAR | - | Real | triangularity | Averaged triangularity of the magnetic surface. |

INDENTR | m | Real | indentation | Averaged indentation of the magnetic surface. |

SURF | m^2 | Real | surface area | Surface area of the magnetic surface in m2. |

GRHO1 | m^-1 | Real | ⟨ | ∇ ρ | ⟩ | Metric quantity: ⟨ | ∇ ρ | ⟩ where ρ is the square root of the normalised toroidal flux |

GRHO2 | m^-2 | Real | ⟨ | ∇ ρ | ^{2} ⟩ | Metric quantity ⟨ | ∇ ρ | ^{2} ⟩, where ρ is the square root of the normalised toroidal flux |